Wir streamen Videos, ziehen Hörbücher auf mobile Geräte und legen ein Fotoarsenal auf unseren Speichermedien an. Kurzum: Die Speicherkapazität, die wir brauchen, nimmt stetig zu. Forscher arbeiten daher daran, neue Möglichkeiten der Datenspeicherung zu entwickeln. Eine Möglichkeit dafür sind Racetrack-Speicher. Die Daten werden dabei in Nanodrähten gespeichert und zwar in Form von gegensätzlich magnetisierten Bereichen, sogenannten Domänen. Die Ergebnisse der internationalen Forschergruppe wurden kürzlich im wissenschaftlichen Journal Nature Materials veröffentlicht.
Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben nun eine Entdeckung gemacht, die diese Racetrack-Speicher langfristig entscheidend verbessern könnte – gemeinsam mit Kollegen der niederländischen Eindhoven University of Technology sowie des Daegu Gyeongbuk Institute of Science and Technology und der Sogang University in Südkorea. Statt der einzelnen Domänen könnte man die Informationen künftig in dreidimensionalen Spinstrukturen speichern und die Speicher auf diese Weise schneller, größer und robuster werden lassen.
„Wir konnten eine bisher unentdeckte Wechselwirkung nachweisen“, erläutert Dr. Kyujoon Lee von der JGU. „Sie tritt zwischen zwei dünnen magnetischen Schichten auf, die durch eine nicht-magnetische Schicht getrennt sind.“ Üblicherweise richten sich Spins parallel oder antiparallel zueinander aus. Genau dies würde man auch für die Spins in den beiden magnetischen Schichten erwarten. Doch tatsächlich verhält es sich anders, wie die Forscher zeigen konnten: Die Spins in den beiden Schichten richten sich gegeneinander verdreht aus, genauer gesagt versuchen sie, sich in einem Winkel von 90 Grad senkrecht zueinander auszurichten. Durch theoretische Berechnungen konnten die weiteren Projektpartner, das Peter Grünberg Institut (PGI) und das Institute for Advanced Simulation (IAS) am Forschungszentrum Jülich, die Ursache für diese versteckte Interlayer-Interaktion nachweisen.
Die Mainzer Forscher untersuchten zahlreiche verschiedene Kombinationen von Multi-Schicht-Systemen und konnten zeigen, dass diese bis dato unbekannte Interaktion in verschiedenen Systemen existiert und durch das Design der Schichten maximiert werden kann.
Mit ihren Ergebnissen decken die Forscher eine Komponente in der Zwischenschicht-Interaktion auf. „Die Ergebnisse sind äußert interessant für das wissenschaftliche Umfeld, zeigen sie doch, dass das bislang fehlende antisymmetrische Element der Interlayer-Wechselwirkung existiert“, erklärt Dr. Dong-Soo Han von der JGU. Dies eröffnet die Möglichkeit, verschiedene neue dreidimensionale Spinstrukturen zu entwerfen, was langfristig zu neuen magnetischen Speichereinheiten führen könnte.
Prof. Dr. Mathias Kläui, Senior-Autor der Veröffentlichung, betont: „Ich bin sehr glücklich darüber, dass diese kollaborative Arbeit in einem internationalen Team einen neuen Weg zu dreidimensionalen Strukturen eröffnet hat, die ein Key-Enabler für neue 3-D-Geräte werden könnten. Über die finanzielle Unterstützung der DFG und des DAAD war es uns möglich, Studenten, Mitarbeiter und Professoren mit den ausländischen Partnern auszutauschen, um diese spannende Arbeit zu realisieren.“
Veröffentlichung:
D.-S. Han et al., Long-range chiral exchange interaction in synthetic antiferromagnets, Nature Materials, 3. Juni 2019,
DOI:10.1038/s41563-019-0370-z
<link https: www.nature.com articles s41563-019-0370-z>
www.nature.com/articles/s41563-019-0370-z
Kontakt:
Dr. Kyujoon Lee
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-27621
E-Mail: <link>kyulee@uni-mainz.de
<link https: www.klaeui-lab.physik.uni-mainz.de team e external-link-new-window>
www.klaeui-lab.physik.uni-mainz.de/team/
Weiterführende Links:
<link https: www.klaeui-lab.physik.uni-mainz.de>
www.klaeui-lab.physik.uni-mainz.de
– Kläui-Lab am Institut für Physik der JGU<link https: www.iph.uni-mainz.de> – Institut für Physik der JGU
Lesen Sie mehr:
<link http: www.uni-mainz.de presse aktuell>
www.uni-mainz.de/presse/aktuell/8323_DEU_HTML.php
– Pressemitteilung „Rechnen mit dem Zufall: Skyrmionen finden Anwendung in neuartiger Computer-Technologie“ (24.04.2019)<link http: www.uni-mainz.de presse>
www.uni-mainz.de/presse/77371.php
– Pressemitteilung „Untersuchungen des Skyrmion-Hall-Effekts zeigen überraschende Ergebnisse“ (27.12.2016)<link http: www.uni-mainz.de presse>
www.uni-mainz.de/presse/74601.php
– Pressemitteilung „Internationalem Forscherteam gelingt kontrollierte Bewegung von Skyrmionen“ (02.03.2016)<link http: www.uni-mainz.de presse>
www.uni-mainz.de/presse/74531.php
– Pressemitteilung „EU-Förderung für herausragende Nachwuchswissenschaftler in der Physik vergeben“ (23.02.2016)<link http: www.uni-mainz.de presse>
– Pressemitteilung „Ursache der ultraschnellen Manipulation von Domänenwänden entdeckt“ (05.10.2012)